The L Programming Language
or
Tcl for C Programmers

Oscar Bonilla, Tim DalyJr., Larry McVoy

BitMover, Inc.
300 Orchard City Drie, Suite 132
Campbell, CA 95008

JeffreyHobbs

ActiveState Software Inc.
1700-409 Granville Street
Vancouver BC, Canada

V6C 1T2

|@bitmover.com

ABSTRACT

This paper describes am@rogramming language called IL is a compiled-to-byte-code
language with the unusual twist that it compiles to Tcl byte codes and by doingragés the
entire Tcl runtime.L is designed to peacefully coexist with Tcl rather than replace O€élunc-
tions may call Tcl procs and vicensa. Thg may also coexist in the same source fileis a
static weakly typed language with int, float, string, struct, aa&y hash as first-class objects.
The L syntax is reminiscent of C with aytibit of C++ thrown in.

The implementation consists primarily of a simple compiler that ks wheneer L
source code is encountere@ihe L code is parsed by a Bison-generated parser into an abstract
syntax tree (AST), which is type-checked and then translated into Tcl byte code. Upealts e
tion, L code is indistinguishable from Tcl code, which makes for easy interoperability.

L is open source software, and it is madeilable under the same license as Tcl/Tk with
the hope that people will find it useful and it may encourage more people to join the Tcl/Tk com-
munity.

“It" s like perl without the nastiest bits.”

-- Donal K. Fe”OWSon the #tcl IRC channel)

1. Introduction

BitMover software is produced using a consaive
development methodology All development goes
through a stringent process that reliesviltgan peer
review and extensie regression tests to ensure quality
products.

Because of the stability requirements of our ragrk
we read code much more than we write 8pot
checks indicate that we spend at least 10 times as
much time reading and viewing as we do writing.
Naturally we tnd to optimize hedly for the read
path rather than the write path.

For years we hee wed the Tcl/Tk system for our
graphical user intezfces. V€ periodically consider
the alternaties and have mnsistently found that short
of doing natve implementations, the Tcl/Tk system is
still the best choice from a dgopment cost point of
view. Qur estimate is that it @uld cost roughly six
times as much to delop and maintain nate GUls
instead of using a single Tcl source base for all plat-
forms. Havever, the maintenance of our Tcl source
base has recently become problematic because tw
things happened:

» Our Tcl source base grepast a manageable size
(for us).

» Our peer revier system could not handle Tcl code.

We have about 25,000 lines lines of Tcl, implement-
ing about a dozen graphical interfaces forwsing
code, checking in code, viewing changes, d¥tain-
taining and extending the Tcl source base has become
unmanageable, and when theviear process s
added to the mix, the costs became too high.

This has been a problem for us for years and we were
forced to come up with a better answ&ve investi-
gaed the alternates hut in the end the Tcl runtime
and the Tk widgets were too compelling/e lved

our problems by marrying a language syntax we felt
was well suited for fast nidewing and understanding
with what we feel is the best GUI toolkit and runtime
awailable today.

The rest of the paper is divided into sections that dis-
cuss the following topics: arverview of L, why the L
approach is interesting, wtother runtimes were not

1 This number is artificially by because we ha
been holding dfon a rumber of GUIs until we had a
better answerHad we not been holding back, 100,000
lines is more likely where we would be.

chosen, wi not pure Tcl, wly not natve GUIs, L
language details such as types, calling/returrvaen
tions, current status, features wedant yet done bt
want to do, licensing andvailability, and a summary
There is an appendix with some smabriing pro-
gram examples.

2. L overview

L is actually a very small addition to the Tcl system.
If we divide the Tcl system into logical parts this
becomes obvious:

Subsection PercentagéTcl/Tk 8.5
Tcl parser/compiler <=1%

L parser/compiler <4%

Tcl runtime 48%

Tk 51%

The parser and compiler are quite small when com-
pared to the code that implements the runtime and the
libraries (in both Tcl and L it is less than 10K lines of
code). Becauséhe parser/compiler is such a small
part of the system, it is reasonable to add an alterna-
tive parser/compiler to the system and let them both
run side by side. That is L in a nutshelt. is the
small amount of ébrt required to leerage a lage
amount of value embodied in the runtime and
libraries.

The L compiler creates an abstract syntax tree from L
source and compiles that to byte codd$e byte
codes generated are standard Tcl byte codeswfollo
ing Tcl call/return cowentions and using Tcl ari-
ables. Becauswe are careful not to breakyafcl
rules, L functions may call Tcl procs and vicersa.
This allovs L to use thex@ensve, mature Tcl/Tk run-
time and libraries unmodified.

3. Uniquedesign

As we dire ceeper into the L syntax and semantics it
would be easy to be drem into a discussion of whL

is better or wig Tcl is better To do so would be to
miss an important pointRegardless of the merits of
each language, the value of L is that it demonstrates a
new way to leverage and reuse existing codélith a
relatively small amount of effort, we ka leveaged

over 1.4 million lines of source making up the Tcl/Tk
system plus some extensions.

The existence of L opens the door ty ammber of
domain-specific languages being added to the Tcl

runtime system.

For example, consider the GDB dadpger GDB lets
users type C, C++, etc., at it and run the cddeing

so means GDB has to pide an interpreter and a
runtime. Rathethan building one, GDB could reuse
the ideas and code pioneered by thefbref Having

a well maintained runtime with the option of creating
an arbitrary syntax to use that runtime is useful for
ary sort of debugger or runtime inspectdr is just
one &le of a different syntax veraging the
Tcl/Tk system; we are confident there will be others.

4. Alternative runtimes

Once the idea of adding a féifent parser/compiler to

a <ripting language is understood, the question
becomes: wi Tcl rather than some other runtime
such as Perl, Python, Ruybyava, or others?We
looked briefly at that question. Our need was for a
well supported, mature runtime that supported script-
ing GUI interfaces and was extensible from C.

We dsmissed Ja kecause the runtime is too dar
and the GUI toolkits are weak, both in features and in
performance. Thether runtimes addressed the GUI
issues mostly by providing Tk bindings (and in some
cases Qt or Gtk bindings)Any system that is using
Tk bindings is already dragging along a Tcl inter
preter to run the Tk codet seemed lik a waste to
have a dfferent interpreter just for the GUIs. It has
also been our experience that the onlgywo hild
robust softvare systems is to @ the minimum num-
ber of ‘moving parts. Having two interpreters is an
unnecessary complication.

But even if there were a good runtime with a good
GUI interface, there s another requirement we felt
was oly well addressed by Tcl.Tcl has been
designed from the onset to be an extendable language.
The original vision was that Tcl was glue and all the
heavy lifting would be done by C extensions to the
language. Thenternal Tcl code isdirly small and
quite pleasant to use; addingtensions is straightfer
ward and natural.We reeded to tak advantage of
this feature of the Tcl system and other runtimes made
this difficult.

5. Lvs pure Tcl

Many in the Tcl community may question whether
there is ap value in an alternate syntax for the Tcl
runtime. Afterall, Tcl is a powerful, dynamic lan-
guage and mansignificant applications are based on
Tcl.

We ayree that Tcl is powerful, but that power comes at
a wost. Tcls dynamic nature makes it impossible to
detect gen Imple parse errors, such as typos, without

running the program.

Although there are advantages to the dynamic
approach in language design, there are alsw-dra
backs:

Data structures. Probably the single lgest problem
we found with Tcl was the lack of a C-style struct,
i.e., a centralized collection obxables with annota-
tions indicating wh they are there. These are com-
monly emulated in Tcl with associai arays. That
isn’t good enough because the “struct fieldse scat-
tered all @er the source base rather than being in one
place, laid out with types and commenft para-
phrase Fred Brook8Show me your code and conceal
your data structures, and | shall continue to be mysti-
fied. Show me your data structures, and | wosU-
ally need your code; it'll be obviou§oks1975a

Lint. It is impossible to write a syntax checker or a
lint-like tol for Tcl that works 100% of the time
unless that tool is actually running the program it is
checking. Een an interpreter-based toobwd have
the problem that it is not practical to force the applica-
tion through all possible code paths. It isrthh not-
ing that this problem is present in all dynamic lan-
guages and object-oriented languagegehhe same
problem; you can’just look at the code and kmo
what it is doing.

Reviewing. As mentioned prgously, at BitMover

we do a lot of peer view as well as other forms of
code reading.For the same reasons that it isfidifilt

to write a lint-like ool for Tcl, it is difficult for a
human to look at Tcl and understand what it is doing.
The verbose style of basic operations in Tcl, e.g.,

Iset fib $i \
[expr\
{[lindex $fib [expr {$i-1}]] +
[lindex $fib [expr {$i-2}]]}]
S
fib[i] = fib[i-1] + fib[i-2];
tend to obscure what is actually being said in the
code.

Optimization. Optimizing Tcl is more challenging
than optimizing a ‘Wweaker’ language such as L.
Many well understood optimization techniques could
be applied to the compilation of L, resulting in a sig-
nificant performance increase for some prograis.

an example, due to the static type system of L, we

believe it's possible to maé L immune to ‘shimmer-
H .n Wiki2005a

ing
We tend to viev Tcl more like asssembly language on
steroids. lItis a powerful tool and when that power is
needed it is appreciated. But most of the time we are
doing fairly simplistic programming deliberately so it

is easy to read, and we find that a static language with
a datic type system is much easier for us to read and
easier for a compiler to optimize and check.

6. L vs native GUlIs

This question gets raised at least once a year here:
why not do natve GQUIS? ltis certainly possible to do

so. We havedone implementations of w&al of our
GUIs in other toolkits. The arguments for doing so
are compelling: better look and feel, natieehavior,

etc.

The reasons for staying with Tcl/Tk are simple:

Cost. The cost of creating 2-4 @&frent implementa-
tions of each GUI interface is probably 3 times what it
took us to get where we are tod&But the cost does
not end there. The cost extends to testing the GUIs on
each platform as well as putting processes in place to
malke wre that the GUIs march forward in sync, i.e., if
the Jaa revtool gets a n® feature, that same feature
needs to be added to the Linuxjndbws, and Aqua
GUIs. Whenwe add up all the costs, it looks more
like 6 imes the effort.

Functionality. Every time we go look at the other
toolkits we find that theare not as powerful as the Tk
toolkit. In particular the camas and text widgets are
more useful than gmothers we hee found.

That said, a large drawback of the Tk approach is the
lack of a complete widget set in the core. In order to
get the functionality needed, a ragtag groupxérm
sions, with partially werlapping features, need to be
combined into a Tcl/Tk'distribution” We look for-
ward to the day that this issue is resolved.

7. L language details

In this section we ogr some of the diierences from
C, differences from Tcl, types, call/return wen-
tions, expressions, and controhflo

7.1. Extensiongo C

Regex. L uses Perk g/ntax for regular expressions in
statements, W it uses TcB reqular expression engine.
So you may say:

if (@ ="/${r}) {...
to get the same results as Tcl's

if {[regexp $r $al} {...

Associatve arays. We all these hashes in L to dis-
tinguish them from traditional C-style array3he
keys and values are strings.

Arrays grow. If you assign into an array past the last
element the array grows as needéthny constructs
that would normally use C pointers, such as édk
lists or trees, can be constructed with an array of
structures linked via indices rather than pointers.

defined(). A built-in that indicates if the ariable
passed is definedThe following tests for thexés-
tence of the field in the hash, and the existence of the
array element, respeedly.

defined(foo{"bar"})
defined(stuff[3])

Strings. Strings are first-class objectsdileny ather
base type. One implication of this is that ualilc
strings, which are pointers, if you want to pass a refer
ence to the string you must do so explicitly.

7.2. UnimplementedC features

L does not hee ht fields, enums, unions, or C-style
pointers. L currently does not wa a Clike pre-
processarthough one is planned.

7.3. Extensiongo Tcl

Type checking L has a weak static type system,
which makes it possible to do type checking at com-
pile time. Note thatk type system is independent of
Tcl's untime type system, although theotean inter
operate. ¥riables in L may not change types, ualik
Tcl variables, which are strings except whenytge
not (as with floats, ints, lists, etc.)

Structs. C-style structs are part of LA Tcl API is
provided that supports getting and setting fields as
well as introspection.

References. Pass by reference in Tcl is possiblatb
awkward. Attemptshave been made to impr@ it in

TclWiki2005b by ¢ they are unsatisfying. We tink our

syntax is cleaner and easier to read.

Function prototypes. Currently these are used to get
type checking when calling Tclubt-ins. For exam-
ple, we can prototype gets() as

extern int gets(FILE, string &);

to always require gets to be called with dwargu-
ments. V¢ oould also prototype gets() as

extern string gets(FILE);

to male it return a string. If prototypes are missing, L
treats undefined functions agternal Tcl functions
that return poly and taka \ariable number of gu-
ments of type poly.

7.4. Types

7.4.1. Simpletypes

int. Integer types in L are li& C integers: thg are

sized to the machine'word size (at least 32 bits and
possibly 64). Integers in L are initialized to O,ven

for local variables.
int a =5
int b;

Any constant that looks lian nt is typed as an int.

/I defaults to O

float. Floating-point numbers in L are at least double-
precision IEEE 754. Floats are initialized to 0sre
for local variables.

Any constant that looks lik a fbat is typed as a float.
Note that this means that assigning angeteto a
float is only lgd because of automatic type aen
sion.

float f = 1; / | ¢ onvertsto 1.0
float g; /l defaults to 0.0
float pi = 3.14159265;

string. The string type is the same as a Tcl striog b
different from a C string.Strings are not null-termi-
nated as theare in C, nor are thearrays of bytes.L
strings are Tcl strings, which are UTF-8 encoded and
have a lnown length. L strings are initialized to the
empty string.
To iterate @er each character in a string, use the
defined() operator:
int i;
strings
for (i = 0; defined(s[i]); i++) {
printf("s[%d]=%s\n", i, s[i]);
}

Note that there is no separate character type in L.
When indeing into a string, each character is merely
a dring of length 1. This also means that there is no
need to use special single-quoted syntax for character
literals:

str[i] = "c";
L provides a special escape sequence, ${, which
allows embedding code in strings. All the text from
${ to the matching } is collected and/auated. Its
value is then substituted into the string:

inti=41;

printf("41 + 1 is ${i + 1}\n");
prints:

41 +1is42

= "a s tring";

7.4.2. Tclishtypes

poly. This is a generic type that is d¢ika Tcl variable

on which no type checking is done. Normaliables
cause compile-time errors if thettempt to change
types; a poly variable suppresses the static type check-
ing so that a variable can switch from one type to
anothere.g. float to array or to int, etc. The folling

is legd code:

poly unchecked;
strings;

unchecked = 1;
unchecked = "Hey there";
unchecked = 3.14;

/I cast is required

s = (string)unchecked;

var. This is a compromise variable typé. is type-
checled but the type is not set until the first assign-
ment. Thetype is determined from the assignment
and may not change. The following throws an error:

var late_binding;
late_binding = 1;
late_binding = "Hey there";
As we noted abee, constant types are intuited’his

might cause problems withar variables. Br exam-
ple, this throws an error:

var f = 1; /] fis n owanint
f="np" 1 int/string error
but this works fine:

var f = 1.0;

f += 3 .14;

7.4.3. Magic

:constant. Marny Tcl/Tk interfaces taf key/value
pairs that look like

text .t -bg white -fg black
which in L might look like
text(".t",
"-bg", "white", "-fg", "black");
We wanted a \ay to male the —~whateverstand out

from the \alues being passed as an argument to
—whatever We decide to do that li this:

text(".t",
:bg, "white", :fg, "black");
When the parser sees an identifier in a function call

that has a leading colon, L treats it as if it were a
guoted string with the colon replaced by a dash.

7.4.4. Compoundypes

array. Arrays are lik C arays in syntax but are
implemented as Tcl lists under thevexs. Arrayele-

ments are homogeneous; all elements must share the

same type. Array assignments in declarations are sup-
ported for globals and locals:

stringfoo[] = { " Hi", "there" };
int barf[] ={1 2 3,4} ;
int i;

int total = 0;

for (i = O; defined(bar[i]); i++) {
total += bar[il;

}

Arrays are dynamically grown and cannot be sparse.
int al2];
a[0] = 10;

a[100] = 20; // allowed

After the preious code has beexesuted,a has 101
elements.a[1] to a[99] have the value 0, which is the
default initial value for integers.

The defined operator is an easy way to check if an
index is outside the array bounds:
[l prints 'no’
if (defined(a[101])) {
printf("yes\n");
} else{
printf("no\n");
}

hash. Hashes are associai arays, indeed by
strings and returning stringalues. Thg are imple-
mented by Tcl dictionaries under thevexs. Hash
assignments in declarations are supported for globals
and locals and follw the Perl syntax:
hash h = { " key"=>"val",

"key2" => "val2" };

h{"foo"} = "bar";

if (defined(h{"blech"})) {
printf("blech is not a key\n");

}

The defined operator can also be used to check if a
key is present in a hash:

/I prints no

if (defined(foo{"k'})) {
printf("yes\n");

} else{
printf("no\n");

}

It is possible to iteratever each \alue in a hash using
a foreach loop:

foreach (has k =>v) {
printf("%s => %s\n", k, v);
}

struct. Structs are collections of typed variables, as in
C. Declarationsare the same as C declarations.
Struct assignments in declarations are supported for
globals and locals:

typedef struct {
int a;
float b;
string c;
}eg

eg s = {1, 3 .14, "hithere"};

Structures are implemented as Tcl lists juse lik
arrays. Thenames are translated into integer indices
by the L compiler Since it is just a Tcl list, an L
structure can be passed to/8rtl proc that expects a
list.

It is likely that we will extend the struct construct to
have initializers, e.g.,

typedef struct {
int a =1;
float b = 3.14;
string ¢ = " hi there";
}eg;
eg foo;

puts(foo.a); / prints 1

7.5. Rassing semantics

A C programmeyrlooking at Tcl, vauld think that the
Tcl model is pass byalue. WhileTcl has no way to
pass a C-style pointer to an object, it doeshavay

to fake it with something calledipvar. L wants pass
by value but it also wants to provide pass by refer
ence. Thisection describes howe used the Tcl sys-
tem to pr@ide the L passing semantics. It amounts to
a little syntactic sugar on top opvar.

7.5.1. Byvalue

L obeys Tcl's mantics for pass byalue. Rrameter
passing looks li& it does in C:

int 1234;

foo(i, Oxdeadbeef, "string");

L programs typically do not pass compound types by
value to other L functions (but see thel) cast belav
for how to pass them to Tcl procs).

7.5.2. Byreference

The Tcl system has a way of passing by reference that
might appear strange to C programmers.

proc foo {ref} {
upvar $ref pointer

set pointer 1
}

The upvar command creates a reference to thé-v
able in the calles mntext and places it inpointer.
Assignments tgointer are the same as if the assign-
ment were done in the callertontext (after eauat-

ing the right-hand side).

We wsed this mechanism to emulate pass by reference
in L. We all it “‘pass by namébecause the caller is
putting the name of the variable on the stack and the
callee is doing an automatipvar to create the refer
ence. Theyntax looks like:

void foo(int &ref)
{

}

ref = 1234;

int a =
foo(&a);
puts(a);

and that prints
1234

Arrays and hashes do not ¢éake ampersand because
they are trying to behee like C arays, i.e., thg are
already references.

void clear(int v[])

19;

{ . .
int i;
for (i = 0; defined(V[i]); i++) {
v[i] = 0;
}
}
int junk]] ={1 2 3} ;

clear(junk);// junk ={0, 0,0}
Note that strings, unlék in C, ae first-class objects
and arenot references. Ifyou want to modify a
string, you must pass it by referendeéor example, to
use the Tcl built-in for reading a line of input you
have © do this:

stringbuf;

// buf is an out parameter
gets(stdin, &buf);

7.5.3. Lpointers

While the upvar trick works nicely for may cases,
there is still a need for real pointers. When creating a
widget, such as an entry box, it would be natural to
have a $ruct that contained all the things related to
that widget such as its path, the variable that the entry
box sets, etc., lk:

widgets(entry &e)

{
e.frame = frame(".f");
e.entry = entry("${top}.entry");
e.entry("configure"”,
‘textvariable, &e.textvar);
}

Our trick of making an ampersand me&push the
variable name on the statldoes not wrk here for
multiple reasons. First, theasiable in this case is a
structure field, which is an element of a Tcl list.
There is currently no ay to pass a list element as a
—variable agument; Tcl does not support thebec-
ond, —variable aguments must be accessible at the
global scope. There is no guarantee that the name
passed in makes sense at the global scope.

What is needed is a way to &#in L \ariable and turn
it into something that Tcl can find out of theeet
loop. Thenatural answer is some kind of pointer.

We aeated a ne Tcl object type to hold all the infor
mation related to a pointerThe information looks
like:

struct pointer {

int depth; [/l upvar #depth
string name; /[var pointed to
string index; // optional index

h

The depth field is used to get to the call frame where
the \ariable being pointed at was declardebr GUI
code like the example ah@, the depth is almost
always 0, indicating a globalThe string is the name
of the \ariable to which the pointer refers. If the
underlying type of the variable is a list (remember that
structs are implemented as lists) then thexridehe
index into that list. The indeis a gring because in
the future we intend to maekpointers into hashes
work.

There is a n@ Tcl command,pointer, which may be
used to manipulate pointers from Tcl directlyhe
following code creates a pointguoints it at the last
element of the list, uses the pointer to get thalue

of the variable pointed at, and uses the pointer to set
the value of the variable pointed at tmo. When we

are done, Bcontainsa b foo.

setl[listab c]

set p [pointer create]
pointer index $p 2
pointer get $p

pointer set $p foo

Let's mow oonsider the widget example alsp
remembering that it had a variable reference
&e.textvar. The compiler preides some magic to
treat that construct as an L pointéhen the com-
piler sees a string constant of the fortvariable?
and the next token is an L variable with a leading
ampersand, the compiler automatically wraps #mé v
able in an L pointer.

printsc

7.5.4. Retun values

Because returns are by value in L, and Tcl also returns
by value, no changes were required to enakturns
work in L.

It is worth noting, especially for C programmers, that
there is a snegkway to do an allocation. When a
local variable is returned, the return bumps the refer
ence count.Without that bump, the local variable in
guestion would hse been freed along with grother
locals that were on the calleetack. Tclobjects are
reference counted so thariable will get freed when
the caller is finished with it.

string(]
vector(int n)

{

string V[];

/I Allocate 0..n-1

v[in-1]=""

return (v);
}

stringfool] = v(100);

7.6. Casts

(tcl). There are times when we need to pass a com-
pound object (arrgyhash) as a stringAny Tcl proc

that expects to see a string on the stack walhwthis.

The (cl) cast is used to do this.

2 Remember that foo token is just syntactic sag
for “ —foo.”

stringv(] =

puts((tcl)v);
prints

hi {good day}

{ " hi", "good day" };

(L). There may be times when a Tcl proc is returning
a omplex structure to us and weamt to cast it from
the Tcl list to our structure:

#lang(tcl)
proc demo {} {
return [list {good day} sir]

}

#lang(L)

v = (L)demo();

printf("%s %s\n", v[0], v[1]);
prints

good day sir

Note: doing this sort of thing puts you at the ngest
the Tcl code which knes nothing about the L type
system.

7.7. Operators

L supports most of the operators in the C program-
ming language, as well asvesal of the most useful
operators from Perl. In this section we do a quick run
through all of the operators in L and discuss some of
their more subtle aspects in depth.

Much of this section is cribbed from the C reference
manualKernighan1978a

7.7.1. Arithmetic operators

The binary arithmetic operators in L are +, -, *, /, and
% (modulus). Thg work as in C with the C prece-
dence rules.

7.7.2. Tue vs. false

All of the relational and logical operators are part of
an expression and that expressioaliates to either
true or false.

In L, there is only one falsealue. Thisis different
from Tcl, which allows manfalse values, such as the
strings ‘false” and “off.” T he false value in L is O,
or, equivaently, “0’". Any value other than 0 is con-
sidered true.
if (0) {
printf("consequent\n™);
} else{
printf("alternative\n™);

}

prints: alternative

7.7.3. NumericComparison

These all work as in C with the C precedence rules.
Relational operators

expr > expr

expr >= expr

expr < expr

expr <= expr

Equality operators

expr == expr

expr = expr

Logical Operators
The && and || operators short-circuit as in C.

expr && expr
expr || expr
I expr

7.7.4. Regularexpression operators

Stolen from Perl, the first form is true riégexis a
regular expression that matchsfring. The second
form is true ifregexis a regular expression that does
not matchstring. The [construct is an alias for a
double quoted string, which means that all or part of
the string may be an interpolated variable qures-
sion). Them|| construct is also from perl; it means
use the ertical bars instead of slashes (frequently use-
ful when dealing with path names).

string =7/ regex

string "/ regex

string =" m| ${expr}

7.7.5. Increment and Decrement Operators

As in C, with the value returned either before or after
the increment or decrement.

Ivaluet++
++lvalue
Ivalue--

-- lvalue

7.7.6. BitwiseOperators

expr & expr
expr | expr
expr © expr
expr << expr
expr >> expr
~expr

7.7.7. AssignmenOperators

Ivalue = expr

Ivalue += expr
Ivalue -= expr
Ivalue *= expr
Ivalue /= expr
Ivalue %= expr
Ivalue <<= expr
Ivalue >>= expr
Ivalue &= expr
Ivalue |= expr
Ivalue "= expr

7.7.8. ernary Operator
expr ? expr : expr

7.8. Reseved Words
These are '’k reserved words:

break case continue defined do
else float for foreach if int L
poly return string struct switch
tcl typedef unless until var void
while

7.9. Control flow
Conditional statements

if (expr) statement
if (expr) statementelse
unless (expr) statement

In all caseexpris evaluated and if it returns gthing
other than zero, then the fiiftstatement is>acuted.
If it returns zero, then thelsestatement or thanless
statement is)@cuted.

statement

While/until statements
while (expr) statement
until (expr) statement

The expr is evaluated andstatementis executed
repeatedly whilexpris non-zero in thavhile case, or
zero in theuntil case.

do statements

do statementwhile (expr)
do statementuntil (expr)

statementis executed repeatedly whilexpr is non-
zero in thewhile case, or until non-zero in thentil
case.

-10-

for statement
for (eXflop; EXPopt; EXPBop) Statement

All expressions are optional. Other than the continue
statement, which in this casgeeutesex8, this is the
same as

expl;

while (ex®) {
statement
exys;

}

foreach statement

foreach (h as key => val) statement
foreach (p in v) statement

The first statement iteratesen each ley/value pair in
the hashh. The key/value pair is placed ikey and
val and therstatemenis executed. Behwior is unde-
fined if keys ae inserted or deleted imin statement
The second statement sqisto each element o,
calling statemenbnce per element.

switch statement
switch (expr) statement

expr must @auate to anint or astring. Any date-
ment within statementmay contain one or more
labeled statements of the form

case constant-expr. statement

case/ constant-expr/: statement

case < constant-expr>: statement
There may be at most one statement of the form:

default: statement
When theswitch statement is runexpr is evaluated
and jumps to theaselabel that matches. Case labels
may be double-quoted string constants, integer con-
stants (not floats), constant regulakpmessions
(/. *.[ch]/), or constant globs (£.[ch] >). If no label
matches, then if thdefault label exists, a jump to the
default label occurs. As in C, control continues to
flow past labels; see the “break statement” fqtirg
from aswitch.

break
break ;

causes termination of the smallest enclosivigle,
until, do, for, or switch statement.

continue
continue ;

causes control to pass to the loop-continuation portion
of the smallest enclosinghile, until, do, or for loop.

return

return;

return (expr);
In the first case the return value is undefined.
second, the return valuedspr.

In the

7.10. Changego Tcl

In the course of implementing L, ossmall but impor

tant changes were made to Tcl that could affect all Tcl
programs, although we ddrexpect the dtcts to be
visible.

7.10.1. Dp-level Compilation

Top-level code in Tcl, i.e., code that igrcontained in

a proc body is now passed to the byte-code compiler
We require this so that the L compiler can emit byte
code for top-leel L code. Itcould be useful in the
future for saing Tcl byte code betweenviocations,
similar to the TclPro compiler.

7.10.2. Changeso the Tcl Parser

The #ang(tcl) string forces the language to be Tcl,
the #ang(L) forces the language to be Ut is
allowed to hae siippets of both L and Tcl in the
same source file.

When Tcl starts up with a file argument, if the file
ends in | then #ang(L) is implicit. Thedefault is to
start up in Tcl mode.

Tcl's Tcl_ParseCommandhas been modified to rec-
ognize a comment with a special form. Whemehe
parser sees laéhg(L) it stops normal parsing and
inserts tvo tokens into the token stream. The first
token is a call to th& CompileCommandunction and
the second is the text after thiag(L) comment up
to the next ¥ang(tcl) comment or end-of-file.

8. Status

The L language is under aati cevdopment and the
speed of deslopment is increasing. Ouixpectation
is that we will hae a sable system in 1-2 months.
Our goal is to be rewriting our GUI tools in L early in
2007. Thereis a mailing list,|@bitmover.com
and an IRC channef# onFreenode . People are
welcome to join either.

9. Future work

9.1. Scoping

Like a C surce file, a scope provides a container for
private and/or public variables and/or functiorighis
could be used to provide a self-contained “class.

-11-

9.2. Pre-compiled modules

Imagine that each scope is a module and each module

can be pre-compiled. The on-disk format is in sec-
tions: thereis a byte-code section and a sort of table
of contents which can be thought of as a header file
containing function prototypes.

9.3. Optimizations

The dynamic nature of Tcl means that maradi-
tional compiler optimization techniques cannot be
used. Lcompiles the source to an abstract syntax tree
and could ta& advantage of a number of well kwa
optimizations. Thesenclude: constant sukpression
elimination, dead code rewa, strength reduction,
loop invariant code motion, tail-call optimization,

code hoisting, and othefgehnick1997a

The lack of general C-lik pointers in L greatly sim-
plifies alias analysis and mekit possible to be more
aggressie when applying optimizatiorf&nd2001a. Mar
lowe1993a

9.4. Delugging

The static nature of L code would neait possible to
create a mapping between L source code and Tcl byte
codes such that traditional debugging techniques
could be used. One possible approaatulel be to
instrument the generated byte code tmlke a c&bug-

ger every time an L statement completes.

10. Licensingand availability

The license is the Tcl license; L is part of Tcl as far as
we are concerned.

The source is maintained in a Bé@&per repository
which is an import of the CVS Tcl repositorior the

3 people in the world who an't use BK, we will do

nightly tarballs and makthem aailable on our FTP
server.

11. Conclusion

This paper has described the L programming lan-
guage. Thd language is unique in that it is an alter
nate syntax which peacefully coexists with the Tcl/Tk
system and keerages all of that system.

Over the course of the reyear we expect to use L to
rewrite our GUI systemsGiven that L is a young lan-
guage, we expect that it will continue tekve as ve
use it. It is likely that we will publish an update@
sion of this paper after the language stabilizes.

12. Acknonvledgements

The L language draws hély from the C language.
It's hard to imagine that Brian, Dennis and Kean

ary more pats on the back, but here is one manie.
are definitely C fans.

Rob Netzer Brian Griffin, and Mark Roseman were
helpful in talking eer various language problems and
ideas.

John Ousterhout for Tcl/Tk, introduced in 1988 and
still going strong.

Kennan Rossi for being there asvays with editorial
help.

This paper \as typeset using gifodnd as alvays we
thank Joe Ossana for tf@hd James Clark for groff.

References
Brooks1975a.
Fred BrooksThe Mythical Man Montl{1975).
Wiki2005a.
The Tclers Wiki, “shimmering}
http://wiki.tcl.tk/3033(Dec 2005).
Wiki2005b.
The Tclers Wki, “use_ref,
http://wiki.tcl.tk/1512QDec 2005).
Kernighan1978a.

Brian W. Kernighan and Dennis M. Ritchi€he
C Programming Languge, Prentice-Hall, Inc.
(1978).

Muchnick1997a.
Steven S. Muchnick, Advanced Compiler
Design and ImplementatioMorgan Kaufmann
(1997).

Hind2001a.
Michael Hind, Pointer Analysis: Haven’ We
Solved This Problem Yet@2001).

Marlowe1993a.
Thomas J. Marlowe, Jong-Deok ChoijINgm
G. Landi, Michael G. Burk, Barbara G. Rydger
and Paul Carini, “Pointer-Induced Aliasing: A
Clarification,” ACM SGPLAN Noticef/olume
28, No. 9) (September 1993).

Appendix - code samples

A simple cat
int
main(int ac, string av[])
et
int i
FILE fd;

if (ac ==1) {
puts(:nonewline, read(stdin));
return (0);

}

for (i = 1; defined(av[i]); i++) {
fd = open(av]i], "r");
puts(:nonewline, read(fd));

}
A simple grep
int
main(int ac, string av[])
{
int i, rc;
string regex;
FILE fd;
if (ac < 2) {
/I Tcl's [error]
error("Not enough arguments.");
regex = av[l];
ac--;
if (ac==1) {
rc = grep(regex, stdin) ? 0 : 1;
return (rc);
} else{
rc=1;
for (i=2;i<ac; i++) {
fd = open(av]i], "r");
if (grep(regex, fd))) rc = 0;
close(fd);
return (rc);
}
int

grep(string regex, FILE in)
{

string buf;
int matches = 0;
while (gets(in, &buf) >=0) {
if (buf =" /${regex}/) {
printf("%s\n", buf);
matches++;

}

return (matches);

Fibonacci
main()

int fib[] = fib(100);

for (i=0; defined(fib[i]); i++) {
printf("%6d\t%d\n", i, fib[i]);

}

}
int[]
fib(int n)
int fib[]
int i;
for (i=2; i<n; i++) {
fib[i] = fib[i-1] + fib[i-2];

={0 1}

}
return (fib);

Quicksort
/*
q sort:
s ort v[left]...v[right]
i nto increasing order.
From K&R C, verbatim.

E I I

*
/
void gsort(int v[], int left, int right)

int i, last;

if (left >= right)
return;

swap(v, left, (left + right)/2);

last = left;

for (i = left+1; i<= right; i++)
if (v[i] < v[left])

swap(v, ++last, i);

swap(v, left, last);
gsort(v, left, last-1);
gsort(v, last+1, right);

/* swap: interchange Vv[i] and Vv[j] */
void swap(int V[], int i, int j)

int temp;
temp = V[i];

vli] = Vil
Vv[j] = temp;

